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Three-Mode Entangled State Representation
of Continuum Variables and Optical
Four-Wave Mixing

Hong-yi Fan1 and Nian-quan Jiang2,3

We establish a new three-mode entangled state representation |β, ζ 〉θ of continuum
variables, which make up a complete set. Using optical four-wave mixing and a beam
splitter transform we can prepare |β, ζ 〉θ . Based on |β, ζ 〉θ a new number-difference—
operational-phase uncertainty relation is established and the corresponding squeezing
dynamics is discussed.

KEY WORDS: three-mode entangled state representation; beam splitter transform;
four-wave mixing process.

1. INTRODUCTION

It is well known that an optical four-wave mixing process (Scully and Zubairy,
2000; Loudon and Knight, 1987) is a nonlinear one in which two planar counter-
propagating intense pump waves ε1 and ε′

1 interact in a nonlinear medium (char-
acterized by a third-order nonlinear susceptibility χ (3), the length of medium is L)
with a probe field ε2 entering at an arbitrary angle to the pump waves and yield a
fourth (output) wave ε3, which is the phase conjugate of ε2. The generated field is
driven only by the complex conjugate of the signal field amplitude, thus leading to
phase conjugate. By extending the classical analysis to phenomenological quan-
tum treatment (the fields are specified at the ends of the nonlinear crystal, z = 0
and L) one can derive that the signal and its conjugate fields (weaker than pump
fields) satisfy the equations (Scully and Zubairy, 2000)

da2

dz
= iκa†

3 ,
da3

dz
= iκa†

2 , (1)

1 Department of Material Science and Engineering, University of Science and Technology of China,
Hefei, Anhui 230026, China.

2 Department of Physics, Wenzhou Normal College, Wenzhou 325027, China.
3 To whom correspondence should be addressed at Wenzhou Normal College; e-mail: jiangnq@mail.

ustc.edu.cn.

2275

0020-7748/04/1100-2275/0 C© 2004 Springer Science+Business Media, Inc.



2276 Fan and Jiang

where κ is a parameter relating to the third-order nonlinear susceptibility χ (3). Let
a2(0) of the probe field ε2 and a3(L) of ε3 be the initial known fields, then the
solution of (1) is (Scully and Zubairy, 2000) (see the appendix).

a2(L) = a2(0) sec θ + i
κ

|κ|a†
3 (L) tan θ , θ = |κ|L ,

a3(0) = a3(L) sec θ + i
κ

|κ|a†
2 (0) tan θ. (2)

These solutions, more or less, resemble the two-mode squeezing transform, how-
ever, its form somehow differs from the well-known Bogolyubov transform (the
usual two-mode squeezing transform is a2 → a2 cosh τ + a†

3 sinh τ, a3 → a3 cosh
τ + a†

2 sinh τ , which happens in a parametric down-conversion process (Loudon
and Knight, 1987)) so we name (2) the four-wave mixing transform. On the
other hand, in recent years quantum entanglement and entangled states have
been paid much attention in quantum optics. For example, Tara and Agarwal
(1994) discussed how the Einstein–Podolsky–Rosen paradox for continuous vari-
ables can be tested using the quadrature amplitudes of a radiation field in the
pair-coherent state. Correlated pairs of photons are produced by two compet-
ing nonlinear processes—four-wave mixing and two-photon absorption. Fan and
Klauder (1994) (Fan et al., 2003) constructed in Fock space the bipartite en-
tangled state |β〉 = exp[− 1

2 |β|2+βa†
1 + β∗a†

2 − a†
2 a†

1 ] |00〉 and later it is shown
that the two-mode squeezing operator exp[λ(a†

1 a†
2 − a1a2)] just squeezes |β〉 →

|β/µ〉 /µ, µ = eλ (Fan and Fan, 1996). It is also shown that the operational-phase
operator proposed by Noh et al. (1991) and analyzed deeply by Freyberger et al.
(1995) manifestly exhibits its phase behavior in the bipartite entangled state repre-
sentation (Fan and Min, 1996). All these indicate that establishing suitable entan-
gled state of continuum variables will be of help in many situations. An interesting
question thus naturally arises: Can we employ the four-wave mixing mechanism
to construct a type of three-mode entangled states? The answer is affirmative. In
Section 2 we present such an entangled state and then discuss its generation. In
Section 3 we discuss its major properties. In Section 4 we show that the new
three-mode entangled state can lead us to construct a new number-difference—
operational-phase uncertainty relation in three-mode case. In Section 5 we discuss
the dynamics governing the number-difference—operational-phase squeezing.

2. THREE-MODE ENTANGLED STATE |β, ζ〉θ
We construct the following three-mode entangled states

|β, ζ 〉θ = cosθ exp

[
− 1

2
(|β|2 + |ζ |2) + βa†

1 + ζa†
3

+ a†
2 (a†

1 − β∗) cos θ − ia†
2 (a†

3 − ζ ∗) sin θ

]
|000〉. (3)
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where β, ζ are two complex variables. This type of state is comparatively simpler
in form. In order to see how four-wave mixing mechanism can engender it, we
introduce an operator S that induces the four-wave mixing transform like (2),

a†
2 → Sa†

2 S−1 = a†
2 sec θ − ia3 tan θ , a†

3 → Sa†
3 S−1 = a†

3 sec θ − ia2 tan θ.

(4)
We can derive the concrete form of S by a mapping from the classical transform

α2 → α2 sec θ − iα∗
3 tan θ , α3 → −iα∗

2 tan θ + α3 sec θ in the coherent state basis
to Hilbert space, i.e.

S =
∫

d2α3d2α2

π2
|α2 sec θ − iα∗

3 tan θ , iα∗
2 tan θ + α3 sec θ〉〈α2, α3|, (5)

where 〈α2, α3| is the two-mode coherent state (Klauder and Skargerstam, 1985;
Glauber, 1963)

〈α2, α3| = 〈0, 0| exp

[
−1

2
|α2|2 + |α3|2 + a2α

∗
2 + a3α

∗
3

]
. (6)

Using the normal ordering form of vacuum projector

|0, 0〉 〈0, 0| =: exp[−a†
2 a2 − a†

3 a3] :, (7)

where the symbol : : denotes normal ordering, and the technique of integration
within an ordered product (IWOP) of operators (Fan, 2003; Wunshe, 1999) we
perform the integral in (5) and obtain

S =
∫

d2α3d2α2

π2
:

[
−1

2
|α2 sec θ − iα∗

3 tan θ |2 + (α2 sec θ − iα∗
3 tan θ ) a†

2

−1

2
|−iα∗

2 tan θ + α3 sec θ |2 + (−iα∗
2 tan θ + α3 sec θ ) a†

3 (8)

−1

2
(|α2|2 + |α3|2) + a2α

∗
2 + α∗

3a3 − a†
2 a2 − a†

3 a3

]
:

= cos θ exp[−ia†
3 a†

2 sin θ ] exp[(a†
2 a2 + a†

3 a3) In cosθ ] exp[−ia3a2 sin θ ].

Using Baker–Hausdorff formula we confirm that (8) really induces (4).
It has been reported (Loock and Braunstein, 2000; Cochrane and Milburn,

2001) that an ideal beam splitter’s operation applied to a momentum squeezed
(maximally squeezed in the P-quadrature direction) vacuum state (mode a†

1 ) and
a position-squeezed (maximally squeezed in the X-quadrature direction) vacuum
state (mode a†

2 ) can yield a two-mode entangled state exp[a†
1 a†

2 ] |00〉12. On the
basis of this state, we let a†

2 -mode, the probe field ε2, be coupled with another
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mode a†
3 in the four-wave mixing equipment then the result can be theoretically

expressed by operating S on the state exp[a†
1 a†

2 ] |00〉12 ⊗ |0〉3, i.e.,

S exp[a†
1 a†

2 ]|000〉 = exp[a†
1 (a†

2 sec θ − ia3 tan θ )]S|000〉
= cos θ exp[a†

1 (a†
2 sec θ − ia3 tan θ )] exp[−a†

2 a†
3 sin θ ]|000〉 (9)

= cos θ exp[a†
1 a†

2 cos θ − ia†
3 a†

2 sin θ ]|000〉 = |β = 0, ζ = 0〉θ .
By further operating the two-mode displacement operator D1(β)D3(ζ ) on

|β = 0, ζ = 0〉θ , where D1 (β) = exp(βa†
1 − β∗a1), D3 (ζ ) = exp(ζa†

3 − ζ ∗a3)
(this displacement can be realized by two local oscillators), we have

D1 (β) D3 (ζ ) |β = 0, ζ = 0〉θ = |β, ζ 〉θ , (10)

which is just (3).

3. PROPERTIES OF |β, ζ〉θ
It stands to reason that |β, ζ 〉θ is a generalized entangled state, in which

a†
2 mode entangles both a†

3 and a†
1 modes. When θ = π, |β, ζ 〉θ → |β〉12 ⊗ |ζ 〉3,

where

|β〉12 = exp

[
−1

2
|β|2 + βa†

1 + β∗a†
2 − a†

2 a†
1

]
|00〉12, (11)

is the two-mode entangled state in modes 2 and 3, and

|ζ 〉3 = exp

[
−1

2
|ζ |2 + ζa†

3

]
|0〉3. (12)

is a coherent state in mode 3. Thus we see that when one makes a correlation
between single-mode coherent states with a two-mode entangled state, one can
obtain a non-trivial three-mode entangled state.

From (3) we obtain three independent eigenvector equations,

(a1 − a†
2 cos θ ) |β, ζ 〉θ = β |β, ζ 〉θ , (13)

(a3 − ia†
2 sin θ ) |β, ζ 〉θ = ζ |β, ζ 〉θ , (14)

(a2 − a†
1 cos θ + ia†

3 sin θ ) |β, ζ 〉θ = (−β∗ cos θ + iζ ∗ sin θ ) |β, ζ 〉θ , (15)

Combining (13) and (14), we have

(a†
2 − a1 cos θ − ia3 sin θ ) |β, ζ 〉θ = (−β cos θ − iζ sin θ ) |β, ζ 〉θ . (16)

and

(a3 cos θ + ia1 sin θ ) |β, ζ 〉θ = (ζ cos θ + iβ sin θ ) |β, ζ 〉θ . (17)
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By introducing X3 = 1√
2
(a3 + a†

3 ), P3 = 1√
2i

(a3 − a†
3 ), (15) and (16) are equiva-

lent to

(X2 − X1 cos θ + P3 sin θ ) |β, ζ 〉θ =
√

2 (ζ2 sin θ − β1 cos θ ) |β, ζ 〉θ , (18)

(P2 + P1 cos θ + X3 sin θ ) |β, ζ 〉θ =
√

2 (β2 cos θ + ζ1 sin θ ) |β, ζ 〉θ . (19)

Note that the three operators (X2 − X1 cos θ + P3 sin θ ), (P2 + P1 cos θ + X3

sin θ ) and (a3 cos θ + ia1 sin θ ) constitute a complete commutable operator set.
Using the technique of IWOP, we can concisely prove∫

d2βd2ζ

π2 cos2 θ
|β, ζ 〉θθ 〈β, ζ | =: exp [a†

2 a2(sin2 θ + cos2 θ − 1)] := 1. (20)

This is the completeness relation of |β, ζ 〉θ . We also calculate

θ
〈
β ′, ζ ′ |β, ζ

〉
θ

= πδ[(β2 − β ′
2) + (ζ1 − ζ ′

1) tan θ ]δ[(β1 − β ′
1) − (ζ2 − ζ ′

2) tan θ ]

× exp

{
β ′∗β + ζ ′∗ζ − 1

2
(|β|2 + |ζ |2 + |β ′|2 + |ζ ′|2)

}
, (21)

which shows that the state |β, ζ 〉θ is partly orthogonal.
Thus the ideal |β, ζ 〉θ is of importance not only because it can be produced ex-

perimentally, but also because it is qualified to make up a new quantum mechanical
representation.

4. NEW NUMBER-DIFFERENCE—OPERATIONAL-PHASE
UNCERTAINTY RELATION IN THREE-MODE CASE

Based on |β, ζ 〉θ we can construct a new number-difference—operational-
phase uncertainty relation. In quantum optics theory, number-phase uncertainty
relation has been a hot topic for many years. In (Noh et al., 1991, 1993) based on
the eight-port homodyne detection scheme Noh, Fougeres and Mandel have in-
troduced the two-mode operational-phase operator

√
(a1 − a†

2 )/(a†
1 − a2) (note [a1 −

a†
2 , a†

1 − a2] = 0, so they can reside in the same square root), which can be di-
agonalized in the bipartite entangled state representation (Fan and Min, 1996).
If the a†

2 -mode undergoes a four-wave mixing transform before it enters into an
eight-port homodyne interferometer, then according to (3) the operational-phase
operator should be modified as√

a1 − a†
2

a†
1 − a2

→ êi� =
√

a1 − a†
2 sec θ + ia3 tan θ

a†
1 − a2 sec θ − ia†

3 tan θ
(22)

=
√

a†
2 − ia3 sin θ − a1 cos θ

a2 + ia†
3 sin θ − a†

1 cos θ
.
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êi� is unitary. Using (15), (16) and (20) we see that êi� is diagonalized in |β, ζ 〉θ
representation,

êi� =
∫

d2βd2ζ

π2 cos2 θ

( −β cos θ − iζ sin θ

−β∗ cos θ − iζ ∗ sin θ

)1/2

|β, ζ 〉θθ 〈β, ζ |
(23)

=
∫

d2βd2ζ

π2 cos2 θ
exp[i arg (−β cos θ − iζ sin θ )]|β, ζ 〉θθ 〈β, ζ |.

Let

A = a2 + ia†
3 sin θ − a†

1 cos θ , (24)

We can make the polar decomposition

A = ê−i�
√

A†A, A† =
√

A†Aêi�, (25)

where

A†A = 1

2
[(X2 − X1 cos θ + P3 sin θ )2 + (P2 + P1 cos θ + X3 sin θ )2]. (26)

After many trials we find that the variable D which is conjugate to the phase
angle �̂,

D = a†
1 a1 − a†

2 a2 + a†
3 a3, (27)

such an operator may describe optical radiation from two energy levels and simul-
taneously absorbed by another energy level. We can prove

[D, A†] = −A†, [D, A] = A, [D, A†A] = 0. (28)

The commutative relation between D and the phase operator is

[D, êi�] = −̂ei�, [ê−i�, D] = −̂e−i�, [�̂, D] = −i. (29)

It then follows a new generalized number-difference—operational-phase uncer-
tainty relation

�D � cos �̂
1

2
|sin �̂|. (30)

5. NUMBER-DIFFERENCE—OPERATIONAL-PHASE
SQUEEZING DYNAMICS

Based on (29) we can also discuss the number-difference—operational-phase
squeezing dynamics in three-mode case. Spirit in similar to (Collet, 1993), we
introduce the following Hamiltonian in the interaction picture

H1 = 1

2
g(D sin �̂ + sin �̂D), (31)
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where g is the coupling constant. From the Heisenberg equation we have

d D

dt
= −i [D, HI ] = g

2
{D, cos �̂}, (32)

where {A, B} denotes AB + BA, and

d

dt
sin �̂ = −g

2
sin 2�̂,

d

dt
cos �̂ = g sin2 �̂. (33)

It then follows

d

dt
tan

1

2
�̂ = d

dt

(
1 − cos �̂

sin �̂

)
= −g tan

1

2
�̂. (34)

The solution to (34) is

tan
1

2
�̂ = e−gt tan

1

2
�̂ (0) , (35)

the factor e−gt explains the time evolution, so HI is the Hamiltonian for phase
squeezing in three-mode case. On the other hand, from (29) we have

[D, {D, sin �̂}] = i{D, cos �̂}, [D, −{D, cos �̂}] = i{D, sin �̂}. (36)

Noting that

sin �̂D2 cos �̂ = 1

2
D2 sin 2�̂ − i{cos �̂, D} cos �̂, (37)

cos �̂D2 sin �̂ = 1

2
D2 sin 2�̂ + i{sin �̂, D} sin �̂, (38)

sin �̂D sin �̂ + cos �̂D cos �̂ = D, (39)

[sin �̂D, cos �̂D] = [D sin �̂, D cos �̂] = −i D, (40)

we can derive

[{D, cos �̂}, {D, sin �̂}] = 4iD. (41)

From (36–41) we see

D,
1

2
i{D, cos �̂}, −1

2
i{D, sin �̂}, (42)

constitute a close SU(2) Li algebra. So the time evolution of operator D is

D (t) = ei H|t D (0) e−i H|t = 1

2
(egt J+ + e−gt J−). (43)

where

J+ = 1

2
{D (0) , 1 − cos �̂}, J− = 1

2
{D (0) , 1 + cos �̂}. (44)
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In summary, we have shown how a four-wave mixing transform, together
with a beam splitter transform, can engender the three-mode entangled state (3).
By combining a beam splitter and a four-wave mixing setup to make up a triter
device in which the two processes coexist, we can engender the new three-mode
entangled state |β, ζ 〉θ . Based on |β, ζ 〉θ a new number-difference—operational-
phase uncertainty relation for three modes is established and the Hamiltonian
for number-difference—operational-phase squeezing in three-mode case can be
derived.
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APPENDIX

The solution of (1) can be

a2 = C1 sin |κ|z + C2 cos |κ|z, a3 = D1 sin |κ|z + D2 cos |κ|z. (45)

Substituting (45) into (1) yields

|κ| (C1 cos |κ| z − C2 sin |κ| z) = ika†
3 ,

|κ| (D1 cos |κ| z − D2 sin |κ| z) = ika†
2 , (46)

where Ci and Di (i = 1, 2) are integral constants to be determined. Let a2(0) of
the probe field ε2 and a3(L) of ε3 be the initial known fields, then from (45) and
(46) one obtains

C2 = a2(0),

D1 sin |κ|L + D2 cos |κ|L = a3(L),

|κ|(C1 cos |κ|L − C2 sin |κ|L) = ika†
3 (L), (47)

|κ|D1 = −ika†
2 (0).

After some simple algebra working out the explicit form of C2 and D2 and
then substituting them into (45) one can reach result (2).
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